Fuzzy c-means for data with tolerance by introducing penalty term

Yuchi Kanzawa, Yasunori Endo, Sadaaki Miyamoto

研究成果: Conference contribution

抄録

In this paper, two new clustering algorithms are proposed for data with some errors. In any of these algorithms, the error is interpreted as one of decision variables - called "tolerance" - of a certain optimization problem like the previously proposed algorithm, but the tolerance in new methods is determined by the new introduced penalty term of it in the corresponding objective function. Through some numerical experiments, the difference between our methods andthe previously proposed one is discussed.

本文言語English
ホスト出版物のタイトルSMCia/08 - Proceedings of the 2008 IEEE Conference on Soft Computing on Industrial Applications
ページ371-376
ページ数6
DOI
出版ステータスPublished - 2008 12 1
イベント2008 IEEE Conference on Soft Computing on Industrial Applications, SMCia/08 - Muroran, Japan
継続期間: 2008 6 252008 6 27

出版物シリーズ

名前SMCia/08 - Proceedings of the 2008 IEEE Conference on Soft Computing on Industrial Applications

Conference

Conference2008 IEEE Conference on Soft Computing on Industrial Applications, SMCia/08
国/地域Japan
CityMuroran
Period08/6/2508/6/27

ASJC Scopus subject areas

  • 人工知能
  • 計算理論と計算数学
  • ソフトウェア
  • 産業および生産工学

フィンガープリント

「Fuzzy c-means for data with tolerance by introducing penalty term」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル