Generalized Fuzzy c-Means Clustering and Its Theoretical Properties

Yuchi Kanzawa, Sadaaki Miyamoto

研究成果: Conference contribution

抄録

This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers standard fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits similar behavior to that of standard fuzzy c-means clustering.

元の言語English
ホスト出版物のタイトルModeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings
編集者Vicenc Torra, Vicenc Torra, Yasuo Narukawa, Manuel González-Hidalgo, Isabel Aguilo
出版者Springer Verlag
ページ243-254
ページ数12
ISBN(印刷物)9783030002015
DOI
出版物ステータスPublished - 2018 1 1
イベント15th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2018 - Palma de Mallorce, Spain
継続期間: 2018 10 152018 10 18

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11144 LNAI
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

Other

Other15th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2018
Spain
Palma de Mallorce
期間18/10/1518/10/18

Fingerprint

Derivatives
Clustering algorithms

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

これを引用

Kanzawa, Y., & Miyamoto, S. (2018). Generalized Fuzzy c-Means Clustering and Its Theoretical Properties. : V. Torra, V. Torra, Y. Narukawa, M. González-Hidalgo, & I. Aguilo (版), Modeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings (pp. 243-254). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 11144 LNAI). Springer Verlag. https://doi.org/10.1007/978-3-030-00202-2_20

Generalized Fuzzy c-Means Clustering and Its Theoretical Properties. / Kanzawa, Yuchi; Miyamoto, Sadaaki.

Modeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings. 版 / Vicenc Torra; Vicenc Torra; Yasuo Narukawa; Manuel González-Hidalgo; Isabel Aguilo. Springer Verlag, 2018. p. 243-254 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻 11144 LNAI).

研究成果: Conference contribution

Kanzawa, Y & Miyamoto, S 2018, Generalized Fuzzy c-Means Clustering and Its Theoretical Properties. : V Torra, V Torra, Y Narukawa, M González-Hidalgo & I Aguilo (版), Modeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 巻. 11144 LNAI, Springer Verlag, pp. 243-254, 15th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2018, Palma de Mallorce, Spain, 18/10/15. https://doi.org/10.1007/978-3-030-00202-2_20
Kanzawa Y, Miyamoto S. Generalized Fuzzy c-Means Clustering and Its Theoretical Properties. : Torra V, Torra V, Narukawa Y, González-Hidalgo M, Aguilo I, 編集者, Modeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings. Springer Verlag. 2018. p. 243-254. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/978-3-030-00202-2_20
Kanzawa, Yuchi ; Miyamoto, Sadaaki. / Generalized Fuzzy c-Means Clustering and Its Theoretical Properties. Modeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings. 編集者 / Vicenc Torra ; Vicenc Torra ; Yasuo Narukawa ; Manuel González-Hidalgo ; Isabel Aguilo. Springer Verlag, 2018. pp. 243-254 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
@inproceedings{c10a1386fe3b4b8ab1ceea5dfe3766a6,
title = "Generalized Fuzzy c-Means Clustering and Its Theoretical Properties",
abstract = "This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers standard fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits similar behavior to that of standard fuzzy c-means clustering.",
keywords = "Fuzzy c-means clustering, Fuzzy classification function",
author = "Yuchi Kanzawa and Sadaaki Miyamoto",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-030-00202-2_20",
language = "English",
isbn = "9783030002015",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "243--254",
editor = "Vicenc Torra and Vicenc Torra and Yasuo Narukawa and Manuel Gonz{\'a}lez-Hidalgo and Isabel Aguilo",
booktitle = "Modeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings",

}

TY - GEN

T1 - Generalized Fuzzy c-Means Clustering and Its Theoretical Properties

AU - Kanzawa, Yuchi

AU - Miyamoto, Sadaaki

PY - 2018/1/1

Y1 - 2018/1/1

N2 - This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers standard fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits similar behavior to that of standard fuzzy c-means clustering.

AB - This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers standard fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits similar behavior to that of standard fuzzy c-means clustering.

KW - Fuzzy c-means clustering

KW - Fuzzy classification function

UR - http://www.scopus.com/inward/record.url?scp=85055721268&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055721268&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-00202-2_20

DO - 10.1007/978-3-030-00202-2_20

M3 - Conference contribution

AN - SCOPUS:85055721268

SN - 9783030002015

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 243

EP - 254

BT - Modeling Decisions for Artificial Intelligence - 15th International Conference, MDAI 2018, Proceedings

A2 - Torra, Vicenc

A2 - Torra, Vicenc

A2 - Narukawa, Yasuo

A2 - González-Hidalgo, Manuel

A2 - Aguilo, Isabel

PB - Springer Verlag

ER -