Hand Sensory Rehabilitation System Which Incorporated Visual and Tactile Feedback

Yuta Hagiwara, Keisuke Takeda, Shinichirou Yamamoto, Yukio Saito

研究成果: Conference contribution

抜粋

In this study, we have been developing a rehabilitation system that combining a motor and sensory function recovery device and a measuring device for a hand sensory. These devices are purposely developed for paralyzed patients. The rehabilitation system was named HSRS (Hand Sensory Rehabilitation system) and it's consists of a training device hand sensory function, a computer to control the device, and an external monitor displays an obtained data from sensors. The training device is able to applycontinuous mechanical stimulation to the hand of a user by grasping the device probe. On the monitor, the self-made Graphical User Interface (GUI) is displayed. An operator instructs the user to match the target value to the measured value in the training. When the user operates the switches, and the device measures the point that contacted with the probe. We did two experiments by using these devices. One is stimulus evaluation experiment. In this experiment, three frequencies (30 [Hz], 60[Hz], 100[Hz]) were given to the human hand and we verified which frequency was most effective. Using a slide caliper and the device to measure sensory function, we evaluated the difference in sensory degree of each healthy subject between before and after using the training device. As a result, we found 60[Hz] is the most effective frequency. In the second experiment, we let a subject follow a target value of GUI. In this experiment, we examined the relation between the sensory function and the motor function and investigated the best evaluation parameter when training the paralyzed patient. As a result, we didn't get difference in the results when comparing in sports experience. However, we got a particularly big difference of the magnitude of the residual during accelerated and deceleration time of the gripping with other items. Moreover, when comparing those who are good and not good sensory in sensory function measurement experiments, there was a tendency that the subjects with not good sensory have the bigger difference with the target value. We confirmed the utility of the measuring devise and the relationship between motor and sensory function.

元の言語English
ホスト出版物のタイトルProceedings - 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Mecatronics 2018
出版者Institute of Electrical and Electronics Engineers Inc.
ページ346-351
ページ数6
ISBN(電子版)9781538629826
DOI
出版物ステータスPublished - 2018 10 17
イベント12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Mecatronics 2018 - Tsu, Japan
継続期間: 2018 9 102018 9 12

出版物シリーズ

名前Proceedings - 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Mecatronics 2018

Other

Other12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Mecatronics 2018
Japan
Tsu
期間18/9/1018/9/12

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Signal Processing
  • Mechanical Engineering
  • Artificial Intelligence
  • Modelling and Simulation
  • Orthopedics and Sports Medicine
  • Control and Optimization
  • Rehabilitation

フィンガープリント Hand Sensory Rehabilitation System Which Incorporated Visual and Tactile Feedback' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Hagiwara, Y., Takeda, K., Yamamoto, S., & Saito, Y. (2018). Hand Sensory Rehabilitation System Which Incorporated Visual and Tactile Feedback. : Proceedings - 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Mecatronics 2018 (pp. 346-351). [8495868] (Proceedings - 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Mecatronics 2018). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/MECATRONICS.2018.8495868