High-order upwind and non-oscillatory approach for steady state diffusion, advection–diffusion and application to magnetized electrons

Amareshwara Sainadh Chamarthi, Kimiya Komurasaki, Rei Kawashima

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Steady state simulations of magnetized electron fluid equations with strong anisotropic diffusion based on the first-order hyperbolic approach is carried out using cell-centered higher order upwind schemes, linear and weighted essentially non-oscillatory (WENO). Along with the magnetized electrons, the diffusion equation is also simulated to demonstrate the implementation and design order of the accuracy of the approach due to their similar upwind structure. We show the adequacy of linear upwind schemes for diffusion equation and the use of shock-capturing scheme like WENO does not have any adverse effect on the solution, unlike the total-variation diminishing (TVD) methods. We further extended the approach to advection–diffusion equation, and appropriate boundary conditions have obtained a consistent design accuracy of the third and fifth order. We implemented the WENO approach to advection–diffusion equation by using the split hyperbolic method to demonstrate the advantage of non-oscillatory schemes to capture sharp gradients in boundary layer type problems without spurious oscillations. Finally, numerical results for magnetized electrons simulations indicate that with increasing strength of magnetic confinement it is possible to capture sharp gradients without oscillations by WENO scheme.

本文言語English
ページ(範囲)1120-1151
ページ数32
ジャーナルJournal of Computational Physics
374
DOI
出版ステータスPublished - 2018 12月 1
外部発表はい

ASJC Scopus subject areas

  • 数値解析
  • モデリングとシミュレーション
  • 物理学および天文学(その他)
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用
  • 計算数学
  • 応用数学

フィンガープリント

「High-order upwind and non-oscillatory approach for steady state diffusion, advection–diffusion and application to magnetized electrons」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル