High-Performance Thermoelectric Oxides Based on Spinel Structure

M. Hussein N. Assadi, J. Julio Gutiérrez Moreno, Marco Fronzi

研究成果: Article査読

12 被引用数 (Scopus)


High-performance thermoelectric oxides could offer a great energy solution for integrated and embedded applications in sensing and electronics industries. Oxides, however, often suffer from low Seebeck coefficient when compared with other classes of thermoelectric materials. In search of high-performance thermoelectric oxides, we present a comprehensive density functional investigation, based on GGA+U formalism, surveying the 3d and 4d transition-metal-containing ferrites of the spinel structure. Consequently, we predict MnFe2O4 and RhFe2O4 have Seebeck coefficients of ±600 μV K-1 at near room temperature, achieved by light hole and electron doping. Furthermore, CrFe2O4 and MoFe2O4 have even higher ambient Seebeck coefficients at ±700 μV K-1. In the latter compounds, the Seebeck coefficient is approximately a flat function of temperature up to ∼700 K, offering a tremendous operational convenience. Additionally, MoFe2O4 doped with 1019 holes/cm3 has a calculated thermoelectric power factor of 689.81 μW K-2 m-1 at 300 K and 455.67 μW K-2 m-1 at 600 K. The thermoelectric properties predicted here can bring these thermoelectric oxides to applications at lower temperatures traditionally fulfilled by more toxic and otherwise burdensome materials.

ジャーナルACS Applied Energy Materials
出版ステータスPublished - 2020 6月 22

ASJC Scopus subject areas

  • 化学工学(その他)
  • エネルギー工学および電力技術
  • 電気化学
  • 電子工学および電気工学
  • 材料化学


「High-Performance Thermoelectric Oxides Based on Spinel Structure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。