TY - JOUR
T1 - High-Temperature oxidation of cathodically hydrogen-charged two-phase (Ti3Al, TiAl) titanium aluminides
AU - Takasaki, Akito
AU - Ojima, Kozo
AU - Taneda, Youji
PY - 1994/11/1
Y1 - 1994/11/1
N2 - Ti-42A1, Ti-45A1, and Ti-5OA1 (at. pct) titanium aluminides, which were cathodically hydrogen charged in a 5 pct H2SO4 solution for charging times between 1.8 ks (0.5 hours) and 14.4 ks (4 hours), were oxidized in a static air under atmospheric pressure at temperatures between 1170 K (897 °C) and 1350 K (1077 °C). All the hydrogen-charged alloys, as well as alloys without hydrogen charging, followed parabolic oxidation kinetics. The weight gains of the alloys after hydrogen charging for normally less than 3.6 ks (1 hour) were 20 to 30 pct less than those without hydrogen charging. In the alloys charged with hydrogen for more than 7.2 ks (2 hours), the weight gains increased with increasing the charging time. The activation energies of oxidation indicated that the oxidation-controlling factor would change after a charging time of 7.2 ks (2 hours) in all the alloys. The decrease in the activation energies with charging time was more drastic in the Ti-5OA1 alloy, which suggested that hydrogen damage, such as cracking, was more severe in the Ti-50Al alloy than in the Ti-42A1 or Ti-45A1 alloys. The formation of cracks during hydrogen charging provides titanium-diffusion paths and accelerates formation of rutile (TiO2) scale on the surface of the alloys. The TiO2 on the alloys after hydrogen charging formed at a comparatively lower temperature than that on the alloys without charging.
AB - Ti-42A1, Ti-45A1, and Ti-5OA1 (at. pct) titanium aluminides, which were cathodically hydrogen charged in a 5 pct H2SO4 solution for charging times between 1.8 ks (0.5 hours) and 14.4 ks (4 hours), were oxidized in a static air under atmospheric pressure at temperatures between 1170 K (897 °C) and 1350 K (1077 °C). All the hydrogen-charged alloys, as well as alloys without hydrogen charging, followed parabolic oxidation kinetics. The weight gains of the alloys after hydrogen charging for normally less than 3.6 ks (1 hour) were 20 to 30 pct less than those without hydrogen charging. In the alloys charged with hydrogen for more than 7.2 ks (2 hours), the weight gains increased with increasing the charging time. The activation energies of oxidation indicated that the oxidation-controlling factor would change after a charging time of 7.2 ks (2 hours) in all the alloys. The decrease in the activation energies with charging time was more drastic in the Ti-5OA1 alloy, which suggested that hydrogen damage, such as cracking, was more severe in the Ti-50Al alloy than in the Ti-42A1 or Ti-45A1 alloys. The formation of cracks during hydrogen charging provides titanium-diffusion paths and accelerates formation of rutile (TiO2) scale on the surface of the alloys. The TiO2 on the alloys after hydrogen charging formed at a comparatively lower temperature than that on the alloys without charging.
UR - http://www.scopus.com/inward/record.url?scp=0028549646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028549646&partnerID=8YFLogxK
U2 - 10.1007/BF02648868
DO - 10.1007/BF02648868
M3 - Article
AN - SCOPUS:0028549646
SN - 1073-5623
VL - 25
SP - 2491
EP - 2496
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
IS - 11
ER -