Hugenholtz-Pines theorem for multicomponent Bose-Einstein condensates

研究成果: Article査読

2 被引用数 (Scopus)

抄録

The Hugenholtz-Pines (HP) theorem is derived for Bose-Einstein condensates (BECs) with internal degrees of freedom. The low-energy Ward-Takahashi identity is provided in the system with the linear and quadratic symmetry breaking terms. This identity serves to organize the HP theorem for multicomponent BECs, such as the binary BEC as well as the spin-f spinor BEC in the presence of a magnetic field with broken U(1)×SO(3) symmetry. The experimental method based on the Stern-Gerlach experiment is proposed for studying the Ward-Takahashi identity.

本文言語English
論文番号053307
ジャーナルPhysical Review A
103
5
DOI
出版ステータスPublished - 2021 5月
外部発表はい

ASJC Scopus subject areas

  • 原子分子物理学および光学

フィンガープリント

「Hugenholtz-Pines theorem for multicomponent Bose-Einstein condensates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル