Improvement of the error bound for the dot product using the unit in the first place

研究成果: Conference contribution

抜粋

This paper is concerned with rounding error estimation for the dot product for numerical computations. Recently, Rump proposed a new type of error bounds for summation and the dot product using the unit in the first place of floating-point numbers. Our aim is to improve the error bound of the dot product. As a result, the constant of the error bound can be reduced.

元の言語English
ホスト出版物のタイトルNumerical Computations: Theory and Algorithms, NUMTA 2016: Proceedings of the 2nd International Conference "Numerical Computations: Theory and Algorithms"
出版者American Institute of Physics Inc.
1776
ISBN(電子版)9780735414389
DOI
出版物ステータスPublished - 2016 10 20
イベント2nd International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2016 - Pizzo Calabro, Italy
継続期間: 2016 6 192016 6 25

Other

Other2nd International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2016
Italy
Pizzo Calabro
期間16/6/1916/6/25

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント Improvement of the error bound for the dot product using the unit in the first place' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Ozaki, K. (2016). Improvement of the error bound for the dot product using the unit in the first place. : Numerical Computations: Theory and Algorithms, NUMTA 2016: Proceedings of the 2nd International Conference "Numerical Computations: Theory and Algorithms" (巻 1776). [090013] American Institute of Physics Inc.. https://doi.org/10.1063/1.4965377