Improvement of the error bound for the dot product using the unit in the first place

研究成果: Conference contribution

抄録

This paper is concerned with rounding error estimation for the dot product for numerical computations. Recently, Rump proposed a new type of error bounds for summation and the dot product using the unit in the first place of floating-point numbers. Our aim is to improve the error bound of the dot product. As a result, the constant of the error bound can be reduced.

本文言語English
ホスト出版物のタイトルNumerical Computations
ホスト出版物のサブタイトルTheory and Algorithms, NUMTA 2016: Proceedings of the 2nd International Conference "Numerical Computations: Theory and Algorithms"
編集者Yaroslav D. Sergeyev, Marat S. Mukhametzhanov, Francesco Dell'Accio, Marat S. Mukhametzhanov, Dmitri E. Kvasov, Yaroslav D. Sergeyev, Dmitri E. Kvasov
出版社American Institute of Physics Inc.
ISBN(電子版)9780735414389
DOI
出版ステータスPublished - 2016 10 20
イベント2nd International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2016 - Pizzo Calabro, Italy
継続期間: 2016 6 192016 6 25

出版物シリーズ

名前AIP Conference Proceedings
1776
ISSN(印刷版)0094-243X
ISSN(電子版)1551-7616

Other

Other2nd International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2016
CountryItaly
CityPizzo Calabro
Period16/6/1916/6/25

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント 「Improvement of the error bound for the dot product using the unit in the first place」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル