Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)

T. Kamae, Y. Fukazawa, N. Isobe, M. Kokubun, A. Kubota, S. Osone, T. Takahashi, N. Tsuchida, H. Ishibashi

研究成果: Article査読

20 被引用数 (Scopus)


Cerium-doped gadolinium silicic dioxide crystal, GSO(Ce), is a high-Z non-hydroscopic scintillator that gives higher light yield than BGO, and can potentially replace NaI(Tl), CsI(Tl) and BGO in many applications. Its production cost, however, has been substantially higher than any of them, while its energy resolution has been worse than that of NaI(Tl) or CsI(Tl). The merit did not overcome these deficiencies except in limited applications. We developed a low background phoswich counter (the well-type phoswich counter) for the Hard X-ray Detector of the Astro-E project based on GSO scintillator. In the developmental work, we have succeeded in improving the light yield of GSO(Ce) by 40-50%. For energies above 500 keV, a large GSO(Ce) crystal (4.5 cm × 4.5φ cm) now gives energy resolution comparable to or better than the best NaI(Tl) when read out with a phototube. With a small GSO(Ce) crystal (5 × 5 × 5 mm3) and a photodiode, an energy resolution comparable to or better than the best CsI(Tl) has been obtained. With this improved performance, we find that the much higher photopeak efficiency and the shorter scintillation decay time of GSO(Ce) offsets its higher cost for many applications. We summarize our past developmental work to decrease radioactive contamination and to increase light yield of GSO(Ce) for astronomical hard X-ray detection. Included also are measurements done after the unsuccessful launch of the Astro-E mission. The work is still continuing for the remake version of Astro-E Hard X-ray Detector.

ジャーナルNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
出版ステータスPublished - 2002 9月 11

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学
  • 器械工学


「Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。