@article{4893658578f846dca03ed3d00891a782,
title = "Integrated on-chip 3D vascular network culture under hypoxia",
abstract = "We developed a portable device made of poly(dimethylsiloxane) (PDMS)/polymethylmethacrylate (PMMA) for long-term 3D cell culture of vascular endothelial cells for the development of a vascular network and evaluated the device under different transitions between normoxia and hypoxia with good optical accessibility. The combination of a nested reservoir device and a bicarbonate/ascorbate buffer system accomplished on-chip incubation with 4.91 ± 0.86% pO2 and 5.19 ± 1.70% pCO2 for up to 10 days. Seventy-two hours of normoxic incubation preceding hypoxic culture increased the cell viability, network formation, and size and stability of the resulting lumens compared with those completely maintained in normoxia for the same total duration. We employed different parameters of the network (e.g., total mesh area, total length, number of branches, among others) for the comparison of different oxygen treatments in the device. The differential effect of hypoxic conditions based on the maturity of the vessels may be used as an external factor to improve vascular development in vitro.",
keywords = "3D cell culture, Angiogenesis, Hypoxia, Normoxic/hypoxic transition, Portable cell culture device, Vascular network",
author = "Olmedo-Su{\'a}rez, {Miguel {\'A}ngel} and Tomohiro Sekiguchi and Atsushi Takano and Ca{\~n}izares-Mac{\'i}as, {Maria del Pilar} and Nobuyuki Futai",
note = "Funding Information: This research was supported by JST CREST Grant Number JPMJCR14W4. In addition, M.A.O.S. is thankful for the mobility fellowship 289105 granted by Consejo Nacional de Ciencia y Tecnolog?a (CONACYT) to conduct research at Shibaura Institute of Technology. We thank Ashleigh Cooper from Edanz Group (https://en-author-services.edanzgroup.com/) for editing a draft of this manuscript. Funding Information: Funding: This research was supported by JST CREST Grant Number JPMJCR14W4. In addition, M.A.O.S. is thankful for the mobility fellowship 289105 granted by Consejo Nacional de Ciencia y Tecnolog{\'i}a (CONACYT) to conduct research at Shibaura Institute of Technology. Publisher Copyright: {\textcopyright} 2020 by the authors.",
year = "2020",
month = may,
day = "1",
doi = "10.3390/MI11050475",
language = "English",
volume = "11",
journal = "Micromachines",
issn = "2072-666X",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "5",
}