TY - JOUR
T1 - Kinetic and Magic Angle Spinning-Nuclear Magnetic Resonance Studies of Wet Oxidation of Beta-Sialon Powders
AU - Kiyono, Hajime
AU - Shimada, Shiro
AU - MacKenzie, K. J.D.
PY - 2001/12/1
Y1 - 2001/12/1
N2 - Wet oxidation of α-Si3N4 and β-sialon (Si6 zAlzOzN8 z, z = 1, 2, and 3) powders was carried out at 1000-1300°C in atmospheres containing 0-20 kPa water vapor. The oxidation was monitored by XRD, 26Si and 17O magic-angle spinning-nuclear magnetic resonance (MAS-NMR), transmission electron microscopy, and thermogravimetric analysis. The kinetic results were compared with those of our previous dry oxidation studies in Ar/O2 (80/20 kPa). The oxide product phase was composed of very tine acicular mullite grains and amorphous SiO2. The early-stage oxidation is described by a two-stage linear kinetic law, the first stage operating at 0-5% reaction, the second at 5-20% reaction. From 20-80% reaction, the kinetics follow a parabolic law represented by the Ginstling-Brounshtein equation. The diffusion rates for wet oxidation were 2-11 times greater than for dry oxidation. The dependence of the diffusion rate on water vapor pressure over the range 0-20 kPa was approximately parabolic, indicating the diffusion of OH ̇, When the z = 3 sialon was oxidized in either Ar/H217O or Ar/O2/H217O atmospheres, 17O was detected by MAS-NMR in the SiO2 and mullite oxidation products, indicating that the oxygen atoms from the water vapor contribute in nearly equal amounts to the formation of mullite and SiO2
AB - Wet oxidation of α-Si3N4 and β-sialon (Si6 zAlzOzN8 z, z = 1, 2, and 3) powders was carried out at 1000-1300°C in atmospheres containing 0-20 kPa water vapor. The oxidation was monitored by XRD, 26Si and 17O magic-angle spinning-nuclear magnetic resonance (MAS-NMR), transmission electron microscopy, and thermogravimetric analysis. The kinetic results were compared with those of our previous dry oxidation studies in Ar/O2 (80/20 kPa). The oxide product phase was composed of very tine acicular mullite grains and amorphous SiO2. The early-stage oxidation is described by a two-stage linear kinetic law, the first stage operating at 0-5% reaction, the second at 5-20% reaction. From 20-80% reaction, the kinetics follow a parabolic law represented by the Ginstling-Brounshtein equation. The diffusion rates for wet oxidation were 2-11 times greater than for dry oxidation. The dependence of the diffusion rate on water vapor pressure over the range 0-20 kPa was approximately parabolic, indicating the diffusion of OH ̇, When the z = 3 sialon was oxidized in either Ar/H217O or Ar/O2/H217O atmospheres, 17O was detected by MAS-NMR in the SiO2 and mullite oxidation products, indicating that the oxygen atoms from the water vapor contribute in nearly equal amounts to the formation of mullite and SiO2
UR - http://www.scopus.com/inward/record.url?scp=0002868528&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0002868528&partnerID=8YFLogxK
U2 - 10.1149/1.1339866
DO - 10.1149/1.1339866
M3 - Article
AN - SCOPUS:0002868528
SN - 0013-4651
VL - 148
SP - B86-B91
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 2
ER -