Leakage-free bonding of porous membranes into layered microfluidic array systems

Bor Han Chueh, Dongeun Huh, Christina R. Kyrtsos, Timothée Houssin, Nobuyuki Futai, Shuichi Takayama

研究成果: Article査読

165 被引用数 (Scopus)

抄録

The integration of semiporous membranes into poly-(dimethylsiloxane) (PDMS) microfluidic devices is useful for mass transport control. Several methods such as plasma oxidation and manual application of PDMS prepolymer exist to sandwich such membranes into simple channel structures, but these methods are difficult to implement with reliable sealing and no leakage or clogging for devices with intricate channel features. This paper describes a simple but robust strategy to bond semiporous polyester and polycarbonate membranes between layers of PDMS microchannel structures effectively without channel clogging. A thin layer of PDMS prepolymer, spin-coated on a glass slide, is transferred to PDMS substrates with channel features as well as to the edges of the semiporous membrane by stamping. This thin PDMS prepolymer serves as "mortar" to strongly bond the two PDMS layers and seal off the crevices generated from the thickness of the membranes. This bonding method enabled the fabrication of an 8 x 12 criss-crossing microfluidic channel array with 96 combinations of fluid interactions. The capability of this device for bioanalysis was demonstrated by measuring responses of cells to different color fluorescent reagents.

本文言語English
ページ(範囲)3504-3508
ページ数5
ジャーナルAnalytical Chemistry
79
9
DOI
出版ステータスPublished - 2007 5月 1
外部発表はい

ASJC Scopus subject areas

  • 分析化学

フィンガープリント

「Leakage-free bonding of porous membranes into layered microfluidic array systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル