LU-Cholesky QR algorithms for thin QR decomposition

Takeshi Terao, Katsuhisa Ozaki, Takeshi Ogita

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This paper aims to propose the LU-Cholesky QR algorithms for thin QR decomposition (also called economy size or reduced QR decomposition). CholeskyQR is known as a fast algorithm employed for thin QR decomposition, and CholeskyQR2 aims to improve the orthogonality of a Q-factor computed by CholeskyQR. Although such Cholesky QR algorithms can efficiently be implemented in high-performance computing environments, they are not applicable for ill-conditioned matrices, as compared to the Householder QR and the Gram–Schmidt algorithms. To address this problem, we apply the concept of LU decomposition to the Cholesky QR algorithms, i.e., the idea is to use LU-factors of a given matrix as preconditioning before applying Cholesky decomposition. Moreover, we present rounding error analysis of the proposed algorithms on the orthogonality and residual of computed QR-factors. Numerical examples provided in this paper illustrate the efficiency of the proposed algorithms in parallel computing on both shared and distributed memory computers.

本文言語English
論文番号102571
ジャーナルParallel Computing
92
DOI
出版ステータスPublished - 2020 4

ASJC Scopus subject areas

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • ハードウェアとアーキテクチャ
  • コンピュータ ネットワークおよび通信
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 人工知能

フィンガープリント

「LU-Cholesky QR algorithms for thin QR decomposition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル