Lyapunov-type inequalities for a Sturm-Liouville problem of the one-dimensional p-Laplacian

Shingo Takeuchi, Kohtaro Watanabe

研究成果: Article査読

抄録

This paper considers the eigenvalue problem for the Sturm-Liouville problem including p-Laplacian {(|u' |p2 u') + (λ + r(x)) |u|p−2u = 0, x ∈ (0, πp), u(0)=u(πp) =0, where 1 < p < ∞, λ < p − 1, πp is the generalized π given by πp = 2π/ (p sin(π/p)) and r ∈ C[0, πp]. Sharp Lyapunov-type inequalities, which are necessary conditions for the existence of nontrivial solutions of the above problem are presented. Results are obtained through the analysis of variational problem related to a sharp Sobolev embedding and generalized trigonometric and hyperbolic functions.

本文言語English
ページ(範囲)383-399
ページ数17
ジャーナルDifferential and Integral Equations
34
7-8
出版ステータスPublished - 2021 7

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Lyapunov-type inequalities for a Sturm-Liouville problem of the one-dimensional p-Laplacian」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル