Marker-directed optimization of UnCAL graph transformations

Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazutaka Matsuda, Keisuke Nakano, Isao Sasano

研究成果: Conference contribution

11 被引用数 (Scopus)

抄録

Buneman et al. proposed a graph algebra called UnCAL (Unstructured CALculus) for compositional graph transformations based on structural recursion, and we have recently applied to model transformations. The compositional nature of the algebra greatly enhances the modularity of transformations. However, intermediate results generated between composed transformations cause overhead. Buneman et al. proposed fusion rules that eliminate the intermediate results, but auxiliary rewriting rules that enable the actual application of the fusion rules are not apparent so far. UnCAL graph model includes the concept of markers, which correspond to recursive function call in the structural recursion. We have found that there are many optimization opportunities at rewriting level based on static analysis, especially focusing on markers. The analysis can safely eliminate redundant function calls. Performance evaluation shows its practical effectiveness for non-trivial examples in model transformations.

本文言語English
ホスト出版物のタイトルLogic-Based Program Synthesis and Transformation - 21st International Symposium, LOPSTR 2011, Revised Selected Papers
ページ123-138
ページ数16
DOI
出版ステータスPublished - 2012
イベント21st International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2011 - Odense, Denmark
継続期間: 2011 7 182011 7 20

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7225 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference21st International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2011
国/地域Denmark
CityOdense
Period11/7/1811/7/20

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Marker-directed optimization of UnCAL graph transformations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル