Mathematical analysis on affine maps for 2D shape interpolation

S. Kaji, S. Hirose, S. Sakata, Y. Mizoguchi, K. Anjyo

研究成果: Conference contribution

8 被引用数 (Scopus)

抄録

This paper gives a simple mathematical framework for 2D shape interpolation methods that preserve rigidity. An interpolation technique in this framework works for given the source and target 2D shapes, which are compatibly triangulated. Focusing on the local affine maps between the corresponding triangles, we describe a global transformation as a piecewise affine map. Several existing rigid shape interpolation techniques are discussed and mathematically analyzed through this framework. This gives us not only a useful comprehensive understanding of existing approaches, but also new algorithms and a few improvements of previous approaches.

本文言語English
ホスト出版物のタイトルComputer Animation 2012 - ACM SIGGRAPH / Eurographics Symposium Proceedings, SCA 2012
編集者Dieter W. Fellner
出版社Association for Computing Machinery, Inc
ページ71-76
ページ数6
ISBN(電子版)9783905674378
出版ステータスPublished - 2012 7 29
外部発表はい
イベント11th ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA 2012 - Lausanne, Switzerland
継続期間: 2012 7 292012 7 31

出版物シリーズ

名前Computer Animation 2012 - ACM SIGGRAPH / Eurographics Symposium Proceedings, SCA 2012

Other

Other11th ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA 2012
CountrySwitzerland
CityLausanne
Period12/7/2912/7/31

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Computer Graphics and Computer-Aided Design
  • Software

フィンガープリント 「Mathematical analysis on affine maps for 2D shape interpolation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル