Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys

Yoshiharu Kariya, Masahisa Otsuka

研究成果: Article査読

157 被引用数 (Scopus)


In our previous study, the fatigue life of Sn-3.5Ag-Bi alloy was found to be dominated by the fracture ductility of the alloy and to obey a modified Coffin-Manson's law: (Δεp/2D)· Nαf = C, where Δεp is plastic strain range, Nf is fatigue life, and α and = C are nondimensional constants. In this study, copper, zinc, and indium are selected as the third element, and the effect of these elements on the isothermal fatigue properties of Sn-3.5%Ag alloy has been investigated. The relationship between fatigue life and crack propagation rate estimated from load drop curve during fatigue test is also discussed. The addition of copper, indium, and zinc up to 2% slightly decreases the fatigue life of Sn-3.5Ag alloy due to the loss of ductility, while the life still remains higher than that of tin-lead eutectic alloy. The modified Coffin-Manson's equation can also be applied to ternary Sn-3.5Ag-X. It is found that both ductility and fatigue life are significantly responsible for the load drop rate of the alloy, which reflects the extent of crack propagation. The fatigue life of Sn-3.5Ag-X alloy is therefore dominated not by the kinds and amount of third element but by the ductility of each alloy.

ジャーナルJournal of Electronic Materials
出版ステータスPublished - 1998 11月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 電子工学および電気工学
  • 材料化学


「Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。