Min-plus eigenvalue of tridiagonal matrices in terms of the ultradiscrete Toda equation

Sennosuke Watanabe, Akiko Fukuda, Hitomi Shigitani, Masashi Iwasaki

研究成果: Article

2 引用 (Scopus)

抜粋

The discrete Toda molecule equation can be used to compute eigenvalues of tridiagonal matrices over conventional linear algebra, and is the recursion formula of the well-known quotient difference algorithm for tridiagonal eigenvalues. An ultradiscretization of the discrete Toda equation leads to the ultradiscrete Toda (udToda) equation, which describes motions of balls in the box and ball system. In this paper, we associate the udToda equation with eigenvalues of tridiagonal matrices over min-plus algebra, which is a semiring with two operation types: ⊕:= min and ⊗ := +. We also clarify an interpretation of the udToda variables in weighted and directed graphs consisting of vertices and edges.

元の言語English
記事番号444001
ジャーナルJournal of Physics A: Mathematical and Theoretical
51
発行部数44
DOI
出版物ステータスPublished - 2018 10 8

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Modelling and Simulation
  • Mathematical Physics
  • Physics and Astronomy(all)

フィンガープリント Min-plus eigenvalue of tridiagonal matrices in terms of the ultradiscrete Toda equation' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用