Molecular dynamics simulation of nano-sized crystallization during plastic deformation in an amorphous metal

R. Tarumi, A. Ogura, M. Shimojo, K. Takashima, Y. Higo

研究成果: Article査読

2 被引用数 (Scopus)

抄録

An NTP ensemble molecular dynamics simulation was carried out to investigate the mechanism of nano-sized crystallization during plastic deformation in an amorphous metal. The atomic system used in this study was Ni single component. The total number of Ni atoms was 1372. The Morse type inter-atomic potential was employed. An amorphous model was prepared by a quenching process from the liquid state. Pure shear stresses were applied to the amorphous model at a temperature of 50 K. At applied stresses of less than 2.4GPa, at a linear relation between shear stress and shear strain was observed. However, at an applied shear stress of 2.8 GPa, the amorphous model started to deform significantly until shear strain reached to 0.78. During this deformation process, phase transformation from amorphous into crystalline structure (fcc) was observed. Furthermore, an orientation relationship between shear directions and crystalline phase was obtained, that is, two shear directions are parallel to a (111) of the fcc structure. This crystallographic orientation relationship agreed well with our experimental result of Ni-P amorphous alloy. Mechanisms of phase transformation from amorphous into crystalline structure were discussed.

本文言語English
ジャーナルMaterials Research Society Symposium-Proceedings
634
出版ステータスPublished - 2001 1 1
外部発表はい

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Molecular dynamics simulation of nano-sized crystallization during plastic deformation in an amorphous metal」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル