More on the isomorphism su(2) ⊗ su(2) ≅ SO(4)

Kazuyuki Fujii, Hiroshi Oike, Tatsuo Suzuki

研究成果: Article査読

7 被引用数 (Scopus)

抄録

In this paper, we revisit the isomorphism SU(2) ⊗ SU(2) ≅ SO(4) to apply to some subjects in Quantum Computation and Mathematical Physics. The unitary matrix Q by Makhlin giving the isomorphism as an adjoint action is studied and generalized from a different point of view. Some problems are also presented. In particular, the homogeneous manifold SU(2n)/SO(2n) which characterizes entanglements in the case of n = 2 is studied, and a clear-cut calculation of the universal Yang-Mills action in (hep-th/ 0602204) is given for the abelian case.

本文言語English
ページ(範囲)471-485
ページ数15
ジャーナルInternational Journal of Geometric Methods in Modern Physics
4
3
DOI
出版ステータスPublished - 2007 5月
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(その他)

フィンガープリント

「More on the isomorphism su(2) ⊗ su(2) ≅ SO(4)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル