### 抜粋

We consider a motion of spiral-shaped piecewise linear curves governed by a crystalline curvature flow with a driving force and a tip motion which is a simple model of a step motion of a crystal surface. We extend our previous result on global existence of a spiral-shaped solution to a linear crystalline motion for a power type nonlinear crystalline motion with a given rotating tip motion. We show that self-intersection of the solution curves never occurs and also show that facet extinction never occurs. Finally, we show that spiral-shaped solutions exist globally in time.

元の言語 | English |
---|---|

記事番号 | A111 |

ページ（範囲） | 111-119 |

ページ数 | 9 |

ジャーナル | Mathematica Bohemica |

巻 | 140 |

発行部数 | 2 |

出版物ステータス | Published - 2015 |

### ASJC Scopus subject areas

- Mathematics(all)

## フィンガープリント Motion of spiral-shaped polygonal curves by nonlinear crystalline motion with a rotating tip motion' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Ishiwata, T. (2015). Motion of spiral-shaped polygonal curves by nonlinear crystalline motion with a rotating tip motion.

*Mathematica Bohemica*,*140*(2), 111-119. [A111].