Non-degeneracy conditions for braided finite tensor categories

研究成果: Article

2 引用 (Scopus)

抜粋

For a braided finite tensor category C with unit object 1∈C, Lyubashenko considered a certain Hopf algebra F∈C endowed with a Hopf pairing ω:F⊗F→1 to define the notion of a ‘non-semisimple’ modular tensor category. We say that C is non-degenerate if the Hopf pairing ω is non-degenerate. In this paper, we show that C is non-degenerate if and only if it is factorizable in the sense of Etingof, Nikshych and Ostrik, if and only if its Müger center is trivial, if and only if the linear map HomC(1,F)→HomC(F,1) induced by the pairing ω is invertible. As an application, we prove that the category of Yetter-Drinfeld modules over a Hopf algebra in C is non-degenerate if and only if C is.

元の言語English
記事番号106778
ジャーナルAdvances in Mathematics
355
DOI
出版物ステータスPublished - 2019 10 15

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Non-degeneracy conditions for braided finite tensor categories' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用