On a k-tree containing specified leaves in a graph

Haruhide Matsuda, Hajime Matsumura

研究成果: Article査読

15 被引用数 (Scopus)

抄録

A k-tree of a graph is a spanning tree with maximum degree at most k. We give sufficient conditions for a graph G to have a k-tree with specified leaves: Let k,s, and n be integers such that k ≥ 2, 0 ≤ s ≤ k, and n ≤ s+1. Suppose that (1) G is (s+1)-connected and the degree sum of any k independent vertices of G is at least |G|+(k-1)s-1, or (2) G is n-connected and the independence number of G is at most (n-s)(k-1)+1. Then for any s specified vertices of G, G has a k-tree containing them as leaves. We also discuss the sharpness of the results.

本文言語English
ページ(範囲)371-381
ページ数11
ジャーナルGraphs and Combinatorics
22
3
DOI
出版ステータスPublished - 2006 11
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「On a k-tree containing specified leaves in a graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル