On a spanning tree with specified leaves

Yoshimi Egawa, Haruhide Matsuda, Tomoki Yamashita, Kiyoshi Yoshimoto

研究成果: Article

5 引用 (Scopus)

抜粋

Let k ≥ 2 be an integer. We show that if G is a (k + 1)-connected graph and each pair of nonadjacent vertices in G has degree sum at least |G| + 1, then for each subset S of V(G) with |S| = k, G has a spanning tree such that S is the set of endvertices. This result generalizes Ore's theorem which guarantees the existence of a Hamilton path connecting any two vertices.

元の言語English
ページ(範囲)13-18
ページ数6
ジャーナルGraphs and Combinatorics
24
発行部数1
DOI
出版物ステータスPublished - 2008 2 1

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

フィンガープリント On a spanning tree with specified leaves' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用