抄録
This article focuses on the probability density functions related to the discrete time maximum of some one-dimensional diffusion processes. Firstly, we shall consider solutions of one-dimensional stochastic differential equations and prove an integration by parts formula on the discrete time maximum of the solutions. The smoothness, expressions and upper bounds of the density function will be obtained by the formula. Secondly, Gaussian processes will be dealt with. For some Gaussian processes, we shall obtain asymptotic behaviors of the density functions related to the discrete time maximum of the processes. The Malliavin calculus and Laplace's method play important roles for the proofs.
本文言語 | English |
---|---|
論文番号 | 127672 |
ジャーナル | Applied Mathematics and Computation |
巻 | 441 |
DOI | |
出版ステータス | Published - 2023 3月 15 |
ASJC Scopus subject areas
- 計算数学
- 応用数学