On packing 3-vertex paths in a graph

Atsushi Kaneko, Alexander Kelmans, Tsuyoshi Nishimura

研究成果: Article査読

25 被引用数 (Scopus)

抄録

Let G be a connected graph and let eb(G) and λ(G) denote the number of end-blocks and the maximum number of disjoint 3-vertex paths Λ in G. We prove the following theorems on claw-free graphs: (t1) if G is claw-free and eb(G) ≤ 2 (and in particular, G is 2-connected) then λ(G) = ⌊|V(G)|/3⌋; (t2) if G is claw-free and eb(G) ≥ 2 then λ(G) ≥ ⌊(|V(G)|-eb(G) + 2)/3⌋; and (t3) if G is claw-free and Δ*-free then λ(G) = ⌊|V(G)|/3⌋ (here Δ* is a graph obtained from a triangle Δ by attaching to each vertex a new dangling edge). We also give the following sufficient condition for a graph to have a Λ-factor: Let n and p be integers, 1 ≤ p ≤ n - 2, G a 2-connected graph, and |V(G)| =3n. Suppose that G-S has a Λ-factor for every S ⊆ V(G) such that |S| = 3p and both V(G)-S and S induce connected subgraphs in G. Then G has a Λ-factor.

本文言語English
ページ(範囲)175-197
ページ数23
ジャーナルJournal of Graph Theory
36
4
DOI
出版ステータスPublished - 2001 4月

ASJC Scopus subject areas

  • 幾何学とトポロジー
  • 離散数学と組合せ数学

フィンガープリント

「On packing 3-vertex paths in a graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル