On the noise resilience of ranking measures

Daniel Berrar

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Performance measures play a pivotal role in the evaluation and selection of machine learning models for a wide range of applications. Using both synthetic and real-world data sets, we investigated the resilience to noise of various ranking measures. Our experiments revealed that the area under the ROC curve (AUC) and a related measure, the truncated average Kolmogorov-Smirnov statistic (taKS), can reliably discriminate between models with truly different performance under various types and levels of noise. With increasing class skew, however, the H-measure and estimators of the area under the precision-recall curve become preferable measures. Because of its simple graphical interpretation and robustness, the lower trapezoid estimator of the area under the precision-recall curve is recommended for highly imbalanced data sets.

本文言語English
ホスト出版物のタイトルNeural Information Processing - 23rd International Conference, ICONIP 2016, Proceedings
出版社Springer Verlag
ページ47-55
ページ数9
9948 LNCS
ISBN(印刷版)9783319466712
DOI
出版ステータスPublished - 2016
イベント23rd International Conference on Neural Information Processing, ICONIP 2016 - Kyoto, Japan
継続期間: 2016 10月 162016 10月 21

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9948 LNCS
ISSN(印刷版)03029743
ISSN(電子版)16113349

Other

Other23rd International Conference on Neural Information Processing, ICONIP 2016
国/地域Japan
CityKyoto
Period16/10/1616/10/21

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「On the noise resilience of ranking measures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル