Optimal routing control of a construction machine by deep reinforcement learning

Zeyuan Sun, Masayuki Nakatani, Yutaka Uchimura

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Deep reinforcement learning algorithms are rapidly growing, and expected to be applied to many industrial fields. In this paper, we proposed a method that combines a deep Q-network with batch normalization to generate an optimal route for a grading machine. The goal is to achieve autonomous operation of the grading machine. For the learning platform, a grading simulator was developed to emulate the grading work. The proposed method was evaluated with the grading simulator, and showed better route searching performance results than the conventional method.

本文言語English
ホスト出版物のタイトルProceedings - 2018 IEEE 15th International Workshop on Advanced Motion Control, AMC 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ187-192
ページ数6
ISBN(電子版)9781538619469
DOI
出版ステータスPublished - 2018 6月 1
イベント15th IEEE International Workshop on Advanced Motion Control, AMC 2018 - Tokyo, Japan
継続期間: 2018 3月 92018 3月 11

出版物シリーズ

名前Proceedings - 2018 IEEE 15th International Workshop on Advanced Motion Control, AMC 2018

Other

Other15th IEEE International Workshop on Advanced Motion Control, AMC 2018
国/地域Japan
CityTokyo
Period18/3/918/3/11

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • 機械工学
  • 制御と最適化

フィンガープリント

「Optimal routing control of a construction machine by deep reinforcement learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル