Optimization of the process parameters of an electrochemical cell in the IS process

Mikihiro Nomura, Hiroyuki Okuda, Seiji Kasahara, Shin Ichi Nakao

研究成果: Article

30 引用 (Scopus)

抜粋

One of the key reactions for efficient hydrogen production using the water-splitting iodine-sulfur (IS or S-I) process is the Bunsen reaction (SO2+I2+2H2O=H2SO4+2HI). The Bunsen reaction was examined using an electrochemical cell with a cation exchange membrane as the separator. The optimal molalities of anolyte and catholyte were evaluated by total thermal efficiency using the heat/mass balance of the IS process. The I2/HI ratio had little effect on the required total voltage; the I2/HI ratio can be reduced to 0.5 without decreasing the total thermal efficiency. On the other hand, HI and H2SO4 molality greatly affected the total thermal efficiency. The total thermal efficiency increased with increasing HI molality up to 16.7molkg-H2O-1 and the maximum thermal efficiency was found at 15.3molkg-H2O-1 of H2SO4. Membrane resistances are very important parameters affecting the efficiency. The total thermal efficiency increased by 3.0% at a current density of the electrochemical cell of 10.0Adm-2 by increasing the operating temperature from 313 to 363 K.

元の言語English
ページ(範囲)7160-7167
ページ数8
ジャーナルChemical Engineering Science
60
発行部数24
DOI
出版物ステータスPublished - 2005 12 1

    フィンガープリント

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

これを引用