Path planning of a mobile robot as a discrete optimization problem and adjustment of weight parameters in the objective function by reinforcement learning

研究成果: Conference contribution

抜粋

In a previous paper, we proposed a solution to path planning of a mobile robot. In our approach, we formulated the problem as a discrete optimization problem at each time step. To solve the optimization problem, we used an objective function consisting of a goal term, a smoothness term and a collision term. This paper presents a theoretical method using reinforcement learning for adjusting weight parameters in the objective functions. However, the conventional Q-learning method cannot be applied to a non-Markov decision process. Thus, we applied Williams's learning algorithm, REINFORCE, to derive an updating rule for the weight parameters. This is a stochastic hill-climbing method to maximize a value function. We verified the updating rule by experiment.

元の言語English
ホスト出版物のタイトルRoboCup 2000
ホスト出版物のサブタイトルRobot Soccer World Cup IV
編集者Peter Stone, Tucker Balch, Gerhard Kraetzschmar
出版者Springer Verlag
ページ315-320
ページ数6
ISBN(印刷物)3540421858, 9783540421856
DOI
出版物ステータスPublished - 2001
外部発表Yes
イベント4th Robot World Cup Soccer Games and Conferences, RoboCup 2000 - Melbourne, VIC, Australia
継続期間: 2000 8 272000 9 3

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2019 LNAI
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

Conference

Conference4th Robot World Cup Soccer Games and Conferences, RoboCup 2000
Australia
Melbourne, VIC
期間00/8/2700/9/3

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント Path planning of a mobile robot as a discrete optimization problem and adjustment of weight parameters in the objective function by reinforcement learning' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Igarashi, H. (2001). Path planning of a mobile robot as a discrete optimization problem and adjustment of weight parameters in the objective function by reinforcement learning. : P. Stone, T. Balch, & G. Kraetzschmar (版), RoboCup 2000: Robot Soccer World Cup IV (pp. 315-320). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 2019 LNAI). Springer Verlag. https://doi.org/10.1007/3-540-45324-5_32