Point cloud clustering using a panoramic layered range image

Masafumi Nakagawa, Kounosuke Kataoka, Shouta Ouma

研究成果: Conference contribution

抄録

Our aim is to improve region-based point cloud clustering in modeling after point cloud integration. First, we proposed a point cloud clustering methodology on a panoramic layered range image generated with point-based rendering from a massive point cloud. Next, we conducted two experiments to verify our methodology. The results of these experiments confirmed that our proposed methodology can achieve point cloud clustering to extract arbitrary features from complex environments including flat surfaces, slopes and stone steps.

本文言語English
ホスト出版物のタイトル34th Asian Conference on Remote Sensing 2013, ACRS 2013
出版社Asian Association on Remote Sensing
ページ36-43
ページ数8
ISBN(印刷版)9781629939100
出版ステータスPublished - 2013 1月 1
イベント34th Asian Conference on Remote Sensing 2013, ACRS 2013 - Bali, Indonesia
継続期間: 2013 10月 202013 10月 24

出版物シリーズ

名前34th Asian Conference on Remote Sensing 2013, ACRS 2013
1

Conference

Conference34th Asian Conference on Remote Sensing 2013, ACRS 2013
国/地域Indonesia
CityBali
Period13/10/2013/10/24

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信

フィンガープリント

「Point cloud clustering using a panoramic layered range image」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル