Quantum diagonalization method in the Tavis-Commings model

Kazuyuki Fujii, Kyoko Higashida, Ryosuke Kato, Tatsuo Suzuki, Yukako Wada

研究成果: Article査読

3 被引用数 (Scopus)

抄録

To obtain the explicit form of evolution operator in the Tavis-Cummings model we must calculate the term e-itg(S+⊗a+S-⊗a†) explicitly which is very hard. In this paper we try to make the quantum matrix A ≡ S+⊗a+S-⊗a diagonal to calculate e-itgA and, moreover, to know a deep structure of the model. For the case of one, two and three atoms we give such a diagonalization which is the first nontrivial examples as far as we know, and reproduce the calculations of e-itgA given in quant-ph/0404034. We also give a hint to an application to non-commutative differential geometry. However, a quantum diagonalization is not unique and is affected by some ambiguity arising from the non-commutativity of operators in quantum physics. Our method may open a new point of view in mathematical or quantum physics.

本文言語English
ページ(範囲)425-440
ページ数16
ジャーナルInternational Journal of Geometric Methods in Modern Physics
2
3
DOI
出版ステータスPublished - 2005 6月
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(その他)

フィンガープリント

「Quantum diagonalization method in the Tavis-Commings model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル