Radial distribution of temperature gradients in growing CZ-Si crystals and its application to the prediction of microdefect distribution

K. Kitamura, J. Furukawa, Y. Nakada, N. Ono, Y. Shimanuki, A. M. Eidenzon, N. I. Puzanov, D. N. Puzanov

研究成果: Article査読

14 被引用数 (Scopus)

抄録

Experiments were performed to estimate the adequacy of simulation results obtained using global analysis of heat transfer performed using melt convection models. First, we reproduced the shapes of the crystal-melt interface for several crystal lengths using two turbulence models with standard value of the Karman constant. Moreover, axial temperature distributions were measured by imbedding thermocouples into the crystal as it grew from the silicon melt. During the experiment, the crystal and the crucible were rotated to match the simulation conditions. Temperatures were measured at three points located at different distances from the crystal axis. Comparing these results with the simulation results, we found that the distribution predicted by the k-l turbulence model was more realistic and agreed well with the results of the experiments. Finally, computer simulation, based on the parallel model of the void and oxide precipitate formation in silicon crystals is reported. The unusual microdefect pattern observed in the silicon crystal with a diameter of 150 mm, where oxide particles occured in the interstitial-rich region was reproduced by the simulation and explained.

本文言語English
ページ(範囲)293-301
ページ数9
ジャーナルJournal of Crystal Growth
242
3-4
DOI
出版ステータスPublished - 2002 7月
外部発表はい

ASJC Scopus subject areas

  • 凝縮系物理学
  • 無機化学
  • 材料化学

フィンガープリント

「Radial distribution of temperature gradients in growing CZ-Si crystals and its application to the prediction of microdefect distribution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル