Regularized fuzzy c-means clustering and its behavior at point of infinity

Yuchi Kanzawa, Sadaaki Miyamoto

研究成果: Article

抜粋

This study shows that a general regularized fuzzy cmeans (rFCM) clustering algorithm, including some conventional clustering algorithms, can be constructed if a given regularizer function value, its derivative function value, and its inverse derivative function value can be calculated. Furthermore, the results of the study show that the behavior of the fuzzy classification function for rFCM at an infinity point is similar to that for some conventional clustering algorithms.

元の言語English
ページ(範囲)485-492
ページ数8
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
23
発行部数3
DOI
出版物ステータスPublished - 2019 5 1

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence

フィンガープリント Regularized fuzzy c-means clustering and its behavior at point of infinity' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用