Relational fuzzy c-means and kernel fuzzy c-means using a quadratic programming-based object-wise β-spread transformation

研究成果: Conference contribution

抄録

Clustering methods of relational data are often based on the assumption that a given set of relational data is Euclidean, and kernelized clustering methods are often based on the assumption that a given kernel is positive semidefinite. In practice, non-Euclidean relational data and an indefinite kernel may arise, and a β-spread transformation was proposed for such cases, which modified a given set of relational data or a given a kernel Gram matrix such that the modified β value is common to all objects. In this paper, we propose a quadratic programming-based object-wise β-spread transformation for use in both relational and kernelized fuzzy c-means clustering. The proposed system retains the given data better than conventional methods, and numerical examples show that our method is efficient for both relational and kernel fuzzy c-means.

本文言語English
ホスト出版物のタイトルKnowledge and Systems Engineering - Proceedings of the 5th International Conference, KSE 2013
編集者Thierry Denoeux, Van-Nam Huynh, Dang Hung Tran, Anh Cuong Le, Son Bao Pham
出版社Springer Verlag
ページ29-43
ページ数15
ISBN(電子版)9783319028200
DOI
出版ステータスPublished - 2014
イベント5th International Conference on Knowledge and Systems Engineering, KSE 2013 - Hanoi, Viet Nam
継続期間: 2013 10 172013 10 19

出版物シリーズ

名前Advances in Intelligent Systems and Computing
245
ISSN(印刷版)2194-5357

Other

Other5th International Conference on Knowledge and Systems Engineering, KSE 2013
国/地域Viet Nam
CityHanoi
Period13/10/1713/10/19

ASJC Scopus subject areas

  • 制御およびシステム工学
  • コンピュータ サイエンス(全般)

フィンガープリント

「Relational fuzzy c-means and kernel fuzzy c-means using a quadratic programming-based object-wise β-spread transformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル