### 抄録

Let G be a graph, and let p(G) and c(G) be the order of a longest path and a longest cycle of G, respectively. In [J. Graph Theory 30 (1999), 91-99], Saito proved that if G is a 2-connected graph with p(G) - c(G) ≥ 2, then p(G) ≥ σ _{3}(G) - 1. In this paper, we evaluate the length of a longest path of G by using σ _{4}(G). Specifically, our main results are the following. (i) If G is a 3-connected graph with p(G) - c(G) ≥ 3, then p(G) ≥ σ _{4}(G)-5, and (ii) if G is a 3-connected graph withp(G)-c(G) ≥ 2, then p(G) ≥ 3σ _{4}(G)/4-1. The statement (ii) is a generalization of Saito's theorem for 3-connected graphs. In fact, we characterize all graphs G with p(G) - c(G) ≥ 2 and p(G) = 3σ _{4}(G)/4-1. Following these results, we propose a conjecture, and obtain an application for the problem concerning the existence of vertex-disjoint paths.

元の言語 | English |
---|---|

ページ（範囲） | 91-107 |

ページ数 | 17 |

ジャーナル | Australasian Journal of Combinatorics |

巻 | 47 |

出版物ステータス | Published - 2010 |

外部発表 | Yes |

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics

### これを引用

*Australasian Journal of Combinatorics*,

*47*, 91-107.

**Relationships between the length of a longest path and the relative length.** / Chiba, Shuya; Matsubara, Ryota; Tsugaki, Masao.

研究成果: Article

*Australasian Journal of Combinatorics*, 巻. 47, pp. 91-107.

}

TY - JOUR

T1 - Relationships between the length of a longest path and the relative length

AU - Chiba, Shuya

AU - Matsubara, Ryota

AU - Tsugaki, Masao

PY - 2010

Y1 - 2010

N2 - Let G be a graph, and let p(G) and c(G) be the order of a longest path and a longest cycle of G, respectively. In [J. Graph Theory 30 (1999), 91-99], Saito proved that if G is a 2-connected graph with p(G) - c(G) ≥ 2, then p(G) ≥ σ 3(G) - 1. In this paper, we evaluate the length of a longest path of G by using σ 4(G). Specifically, our main results are the following. (i) If G is a 3-connected graph with p(G) - c(G) ≥ 3, then p(G) ≥ σ 4(G)-5, and (ii) if G is a 3-connected graph withp(G)-c(G) ≥ 2, then p(G) ≥ 3σ 4(G)/4-1. The statement (ii) is a generalization of Saito's theorem for 3-connected graphs. In fact, we characterize all graphs G with p(G) - c(G) ≥ 2 and p(G) = 3σ 4(G)/4-1. Following these results, we propose a conjecture, and obtain an application for the problem concerning the existence of vertex-disjoint paths.

AB - Let G be a graph, and let p(G) and c(G) be the order of a longest path and a longest cycle of G, respectively. In [J. Graph Theory 30 (1999), 91-99], Saito proved that if G is a 2-connected graph with p(G) - c(G) ≥ 2, then p(G) ≥ σ 3(G) - 1. In this paper, we evaluate the length of a longest path of G by using σ 4(G). Specifically, our main results are the following. (i) If G is a 3-connected graph with p(G) - c(G) ≥ 3, then p(G) ≥ σ 4(G)-5, and (ii) if G is a 3-connected graph withp(G)-c(G) ≥ 2, then p(G) ≥ 3σ 4(G)/4-1. The statement (ii) is a generalization of Saito's theorem for 3-connected graphs. In fact, we characterize all graphs G with p(G) - c(G) ≥ 2 and p(G) = 3σ 4(G)/4-1. Following these results, we propose a conjecture, and obtain an application for the problem concerning the existence of vertex-disjoint paths.

UR - http://www.scopus.com/inward/record.url?scp=77953149107&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77953149107&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:77953149107

VL - 47

SP - 91

EP - 107

JO - Australasian Journal of Combinatorics

JF - Australasian Journal of Combinatorics

SN - 1034-4942

ER -