Risk-Aware Linear Quadratic Control Using Conditional Value-at-Risk

Masako Kishida, Ahmet Cetinkaya

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Stochastic linear quadratic control problems are considered from the viewpoint of risks. In particular, a worst-case conditional value-at-risk (CVaR) of quadratic objective function is minimized subject to additive disturbances whose first two moments of the distribution are known. The study focuses on three problems of finding the optimal feedback gain that minimizes the quadratic cost of: stationary distribution, one-step, and infinite time horizon. For the stationary distribution problem, it is proved that the optimal control gain that minimizes the worst-case CVaR of the quadratic cost is equivalent to that of the standard (stochastic) linear quadratic regulator. For the one-step problem, an approach to an optimal solution as well as analytical suboptimal solutions are presented. For the infinite time horizon problem, two suboptimal solutions that bound the optimal solution and an approach to an optimal solution for a special case are discussed. The presented theorems are illustrated with numerical examples.

本文言語English
ページ(範囲)416-423
ページ数8
ジャーナルIEEE Transactions on Automatic Control
68
1
DOI
出版ステータスPublished - 2023 1月 1
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Risk-Aware Linear Quadratic Control Using Conditional Value-at-Risk」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル