Sampled-data state-estimation of delayed complex-valued neural networks

Nallappan Gunasekaran, Guisheng Zhai

研究成果: Article

4 引用 (Scopus)

抜粋

This paper studies the sampled-data state-estimation problem of delayed complex-valued neural networks (CVNNs). By using Lyapunov–Krasovskii functional (LKF), standard integral inequality together with the reciprocal convex approach, a delay-dependent condition is established in terms of the solution to linear matrix inequalities (LMIs) such that the consider CVNNs is asymptotically stable. As a result, an estimator gain matrix can be obtained through sampling instant. Finally, a simulation example is given to illustrate the theoretical analysis.

元の言語English
ジャーナルInternational Journal of Systems Science
DOI
出版物ステータスAccepted/In press - 2019 1 1

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications

フィンガープリント Sampled-data state-estimation of delayed complex-valued neural networks' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用