抄録
In neurosurgery, surgeons sometimes retract brain tissue to prepare an operating field around a lesion. In addition, they are required to plan a safe surgical pathway for deep-brain regions while considering tissue damage caused by excessive stress. The goal of this study is to develop a technique for automatically generating a surgery pathway for lesions in the deep-brain region, focusing on securing an operating field around the lesion as a first step and also considering brain tissue deformation. In previous studies, securing the operating field has been treated as a single-objective optimization problem in order to maximize the viewable area of the lesion. However, in this study, the task of securing the operating field is formulated as a multi-objective optimization problem. Using a technique that combines finite element analysis and an optimization method, the principal stress on the brain is constrained to less than a certain threshold value, and the position and orientation of the surgical instrument are optimized for safe retraction of the brain according to various weighting factors.
本文言語 | English |
---|---|
ページ(範囲) | 1245-1259 |
ページ数 | 15 |
ジャーナル | Advanced Robotics |
巻 | 30 |
号 | 19 |
DOI | |
出版ステータス | Published - 2016 10月 1 |
外部発表 | はい |
ASJC Scopus subject areas
- ソフトウェア
- 制御およびシステム工学
- 人間とコンピュータの相互作用
- ハードウェアとアーキテクチャ
- コンピュータ サイエンスの応用