Sequential cluster extraction using power-regularized possibilistic c-means

研究成果: Article査読

5 被引用数 (Scopus)

抄録

The present study proposes an algorithm for sequential cluster extraction using power-regularized possibilistic c-means (pPCM). First, pPCM is derived in a similar manner to two types of entropy-regularized possibilistic c-means (ePCM) derivations, where a power function is utilized instead of the negative entropy in ePCM. The cluster fusion with pPCM is identical to the mean-shift with a generalized Epanichnikov kernel, whereas the proposed method employs sequential cluster extraction with pPCM. Numerical examples show that the cluster number produced by the proposed algorithm did not match with the true class number in real datasets, but the extracted clustering results were partially successful in terms of capturing dense regions of objects.

本文言語English
ページ(範囲)67-73
ページ数7
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
19
1
DOI
出版ステータスPublished - 2015 1月 1

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Sequential cluster extraction using power-regularized possibilistic c-means」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル