Solutions of polynomial Pell's equation

H. Yokota

研究成果: Review article査読

2 被引用数 (Scopus)

抄録

Let D=F2+2G be a monic quartic polynomial in Z[x], where degG<degF. Then for F/G∈Q[x], a necessary and sufficient condition for the solution of the polynomial Pell's equation X2-DY2=1 in Z[x] has been shown. Also, the polynomial Pell's equation X2-DY2=1 has nontrivial solutions X,Y∈Q[x] if and only if the values of period of the continued fraction of D are 2, 4, 6, 8, 10, 14, 18, and 22 has been shown. In this paper, for the period of the continued fraction of D is 4, we show that the polynomial Pell's equation has no nontrivial solutions X,Y∈Z[x].

本文言語English
ページ(範囲)2003-2010
ページ数8
ジャーナルJournal of Number Theory
130
9
DOI
出版ステータスPublished - 2010 9

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「Solutions of polynomial Pell's equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル