抄録
For a graph H and an integer K ≥ 2, let σ k(H) denote the minimum degree sum of k independent Vertices of H. We prove that if a connected claw-free graph G satisfies σ k+1 (G) ≥ |G| -k, then G has a spanning tree with at most k leaves. We also show that the bound |G| -k is sharp and discuss the maximum degree of the required spanning trees.
本文言語 | English |
---|---|
ページ(範囲) | 137-154 |
ページ数 | 18 |
ジャーナル | Ars Combinatoria |
巻 | 103 |
出版ステータス | Published - 2012 1月 1 |
ASJC Scopus subject areas
- 数学 (全般)