Spatial Resolution Enhancement of Brillouin Optical Correlation-Domain Reflectometry Using Convolutional Neural Network: Proof of Concept

Jelah N. Caceres, Kohei Noda, Guangtao Zhu, Heeyoung Lee, Kentaro Nakamura, Yosuke Mizuno

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Brillouin optical correlation-domain reflectometry (BOCDR) is a fiber-optic distributed sensing technique with single-end accessibility and high spatial resolution. In BOCDR, the measured Brillouin gain spectrum (BGS) distribution is generally given by a convolution of the intrinsic BGS distribution and the beat-power spectrum. In most conventional implementations, the Brillouin frequency shift (BFS) distribution is directly obtained using the measured BGS distribution. Determining the BFS distribution on the basis of the intrinsic BGS distribution will give potentially higher spatial resolution, which can be achieved by deconvolution of the measured BGS distribution. In this work, we employ a convolutional neural network to perform this deconvolution processing in BOCDR and show its potential for spatial resolution enhancement. A spatial resolution which is 5 times higher than the nominal value is demonstrated.

本文言語English
ページ(範囲)124701-124710
ページ数10
ジャーナルIEEE Access
9
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)

フィンガープリント

「Spatial Resolution Enhancement of Brillouin Optical Correlation-Domain Reflectometry Using Convolutional Neural Network: Proof of Concept」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル