TY - JOUR
T1 - Special variation of infiltration-growth processed bulk YBCO fabricated using new liquid source
T2 - Ba3Cu5O8 (1:1.3) and YbBa2Cu3O y
AU - Miryala, Sushma
AU - Murakami, Masato
N1 - Publisher Copyright:
© 2021, University of Science and Technology Beijing.
PY - 2021/6
Y1 - 2021/6
N2 - Utilization of novel materials, particularly high-Tc (critical temperature) superconductors, is essential to pursue the United Nations’ Sustainable Goals, as well as to meet the increasing worldwide demand for clean and carbon-free electric power technologies. Superconducting magnets are beneficial in several real-life applications including transportation, energy production, magnetic resonance imaging (MRI), and drug delivery systems. To achieve high performance, one must develop uniform, large-grain, infiltration-growth (IG) processed bulk YBa2Cu3Oy (Y-123) super-magnets. In this study, we report the magnetic and microstructural properties of a large-grain, top-seeded, IG-processed Y-123 pellet, which is 20 mm in diameter and 6 mm in height; the pellet is produced utilizing liquid Yb-123+Ba3Cu5O8 as the liquid source. All the samples cut from the top of the bulk exhibit a sharp superconducting transition (approximately 1 K wide) with the onset Tc of approximately 90 K. However, in the samples cut from the bottom surface, the onset Tc values slightly decreased to between 88 and 90 K, although still exhibiting a sharp superconducting transition. The top and bottom samples exhibited the highest remnant value of Jc (critical current density) at 77 K H//c-axis of 50 and 55 kA/cm2, respectively. The remnant Jc and irreversibility field values significantly fluctuated, being fairly low in some bottom samples. Scanning electron microscopy identified nanometer size Y-211 (Y2BaCuO5) secondary-phase particles dispersed in the Y-123 matrix. Energy-dispersive spectroscopy clarified that the decreased both Tc and Jc for the bottom samples were attributed to liquid phase dispersion within the Y-123 phase.
AB - Utilization of novel materials, particularly high-Tc (critical temperature) superconductors, is essential to pursue the United Nations’ Sustainable Goals, as well as to meet the increasing worldwide demand for clean and carbon-free electric power technologies. Superconducting magnets are beneficial in several real-life applications including transportation, energy production, magnetic resonance imaging (MRI), and drug delivery systems. To achieve high performance, one must develop uniform, large-grain, infiltration-growth (IG) processed bulk YBa2Cu3Oy (Y-123) super-magnets. In this study, we report the magnetic and microstructural properties of a large-grain, top-seeded, IG-processed Y-123 pellet, which is 20 mm in diameter and 6 mm in height; the pellet is produced utilizing liquid Yb-123+Ba3Cu5O8 as the liquid source. All the samples cut from the top of the bulk exhibit a sharp superconducting transition (approximately 1 K wide) with the onset Tc of approximately 90 K. However, in the samples cut from the bottom surface, the onset Tc values slightly decreased to between 88 and 90 K, although still exhibiting a sharp superconducting transition. The top and bottom samples exhibited the highest remnant value of Jc (critical current density) at 77 K H//c-axis of 50 and 55 kA/cm2, respectively. The remnant Jc and irreversibility field values significantly fluctuated, being fairly low in some bottom samples. Scanning electron microscopy identified nanometer size Y-211 (Y2BaCuO5) secondary-phase particles dispersed in the Y-123 matrix. Energy-dispersive spectroscopy clarified that the decreased both Tc and Jc for the bottom samples were attributed to liquid phase dispersion within the Y-123 phase.
KW - critical current density
KW - infiltration growth
KW - scanning electron microscopy
KW - special variation
UR - http://www.scopus.com/inward/record.url?scp=85107223047&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107223047&partnerID=8YFLogxK
U2 - 10.1007/s12613-020-2213-y
DO - 10.1007/s12613-020-2213-y
M3 - Article
AN - SCOPUS:85107223047
VL - 28
SP - 1048
EP - 1056
JO - International Journal of Minerals, Metallurgy and Materials
JF - International Journal of Minerals, Metallurgy and Materials
SN - 1674-4799
IS - 6
ER -