Stability analysis for switched systems with continuous-time and discrete-time subsystems: A lie algebraic approach

Guisheng Zhai, Derong Liu, Joe Imae, Tomoaki Kobayashi

研究成果: Conference article査読

1 被引用数 (Scopus)

抄録

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. A numerical example is provided to demonstrate the result.

本文言語English
論文番号1465304
ページ(範囲)3183-3186
ページ数4
ジャーナルProceedings - IEEE International Symposium on Circuits and Systems
DOI
出版ステータスPublished - 2005 12 1
外部発表はい
イベントIEEE International Symposium on Circuits and Systems 2005, ISCAS 2005 - Kobe, Japan
継続期間: 2005 5 232005 5 26

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Stability analysis for switched systems with continuous-time and discrete-time subsystems: A lie algebraic approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル