Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach

Guisheng Zhai, Bo Hu, Kazunori Yasuda, Anthony N. Michel

研究成果: Article査読

433 被引用数 (Scopus)

抄録

We study the stability properties of switched systems consisting of both Hurwitz stable and unstable linear time-invariant subsystems using an average dwell time approach. We propose a class of switching laws so that the entire switched system is exponentially stable with a desired stability margin. In the switching laws, the average dwell time is required to be sufficiently large, and the total activation time ratio between Hurwitz stable subsystems and unstable subsystems is required to be no less than a specified constant. We also apply the result to perturbed switched systems where nonlinear vanishing or non-vanishing norm-bounded perturbations exist in the subsystems, and we show quantitatively that, when norms of the perturbations are small, the solutions of the switched systems converge to the origin exponentially under the same switching laws.

本文言語English
ページ(範囲)1055-1061
ページ数7
ジャーナルInternational Journal of Systems Science
32
8
DOI
出版ステータスPublished - 2001
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 理論的コンピュータサイエンス
  • コンピュータ サイエンスの応用

フィンガープリント

「Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル