Stability and ℋ disturbance attenuation analysis for symmetric takagi-sugeno fuzzy systems

研究成果: Paper査読

抄録

In this paper, we study the stability and ℋ disturbance attenuation properties for a class of Takagi-Sugeno fuzzy systems composed of a finite number of linear time-invariant symmetric subsystems. We focus our attention on discrete-time systems. We show that when all the subsystems are Schur stable, the fuzzy system is asymptotically stable under arbitrary IF-THEN rule. Furthermore, we show that when all the subsystems are Schur stable and have the- ℋ disturbance attenuation level less than a constant γ, the fuzzy system is asymptotically stable and achieves the ℋ disturbance attenuation level γ under arbitrary IF-THEN rule. The key idea for both stability and ℋ disturbance attenuation analysis in this paper is to establish a common Lyapunov function for all the subsystems in the fuzzy system.

本文言語English
ページ310-315
ページ数6
出版ステータスPublished - 2004 12 1
イベントProceedings of the 2004 IEEE International Symposium on Intelligent Control - 2004 ISIC - Taipei, Taiwan, Province of China
継続期間: 2004 9 22004 9 4

Conference

ConferenceProceedings of the 2004 IEEE International Symposium on Intelligent Control - 2004 ISIC
国/地域Taiwan, Province of China
CityTaipei
Period04/9/204/9/4

ASJC Scopus subject areas

  • 制御およびシステム工学
  • モデリングとシミュレーション
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Stability and ℋ<sub>∞</sub> disturbance attenuation analysis for symmetric takagi-sugeno fuzzy systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル