Structure and biosensor characteristics of complex between glucose oxidase and plasma-polymerized nanothin film

Hitoshi Muguruma, Yoshihiro Kase

研究成果: Article

28 引用 (Scopus)

抜粋

The structure and biosensor characteristics of complex between glucose oxidase (GOD) and plasma-polymerized nanothin film (PPF), in which the thickness is several nanometers, were investigated by atomic force microscopy (AFM) and electrochemical measurement. The GOD molecules were densely adsorbed onto the PPF surface treated by nitrogen plasma and the individual GOD molecules were observed. Subsequently, the GOD densely packed array on the PPF surface was subsequently treated by plasma polymerization (overcoating). AFM image showed that the thicker film gave the smoother surface, indicating that the GOD adsorbed on the surface was embedded more deeply in PPF. The amperometric biosensor characteristics of the GOD-PPF complex on a platinum electrode showed the current increment due to the enzymatic reaction with glucose addition, indicating that enzyme activity was retained although the enzyme has been exposed to the plasma gas related to diffusion of the substrate. This means that under mild exposure to organic plasma, the enzyme does not become seriously dysfunctional. Amperometric biosensor characteristics were strongly affected by monomer and thickness of PPF overcoating related with the diffusion of the substrate (glucose). Considering that the film deposition was performed using microfabrication-compatible organic plasma, our new method for protein architecture has a great potential of enabling high throughput production of bioelectronic devices.

元の言語English
ページ(範囲)737-743
ページ数7
ジャーナルBiosensors and Bioelectronics
22
発行部数5
DOI
出版物ステータスPublished - 2006 12 15

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Biomedical Engineering
  • Electrochemistry

フィンガープリント Structure and biosensor characteristics of complex between glucose oxidase and plasma-polymerized nanothin film' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用