Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation: A comparison to liquid Pb

T. Itami, S. Munejiri, Tadahiko Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, K. Hoshino

研究成果: Article

77 引用 (Scopus)

抄録

The structure of liquid Sn was studied by neutron scattering experiments in the widest temperature range that was ever performed. Though, on increasing temperature, the existence of the shoulder in the structure factor, S(Q), becomes less clear in the change of the overall shape of the S(Q), the structure related to this shoulder seems to be present even at 1873 K. The first-principle molecular-dynamics (FPMD) simulation was performed for the first time for liquid Sn by using the cell size of 64 particles. The calculated results well reproduced S(Q) obtained by the neutron experiments. The angle distribution, g(3)(θ,rc), was evaluated for the angle between vectors from centered atom to other two atoms in spheres of cutoff radii rc's. The g(3)(θ, rc) shows that, with the decrease of rc from 0.4 to 0.3 nm, a rather sharp peak around 60 ° disappears and only a broad peak around 100 ° remains; the former peak may be derived from the feature of the closely packed structures and the latter one is close to the tetrahedral angle of 109 °. In addition, the coordination number, n, of liquid Sn counted within the sphere of rc=0.3 nm is found to be 2-3 and does not change with the increase of temperature even up to 1873 K. These facts indicate that at least the fragment of the tetrahedral unit may be essentially kept even at 1873 K for liquid Sn. For comparison, the FPMD simulation was performed for the first time also for liquid Pb. No sign of the existence of the tetrahedral structure was observed for liquid Pb. Unfortunately, the self-diffusion coefficients, D's, obtained from this FPMD for liquid Sn do not agree with those obtained by the microgravity experiments though the structure factors, S(Q)'s, are well reproduced. To remove the limitation of the small cell size of the FPMD, the classical molecular-dynamics simulations with a cell size of 2197 particles were performed by incorporating the present experimental structural information of liquid Sn. Obtained D's are in good agreement with the microgravity data.

元の言語English
記事番号064201
ページ(範囲)642011-6420112
ページ数5778102
ジャーナルPhysical Review B - Condensed Matter and Materials Physics
67
発行部数6
出版物ステータスPublished - 2003 2 1
外部発表Yes

Fingerprint

Neutron scattering
Molecular dynamics
neutron scattering
molecular dynamics
Computer simulation
Liquids
liquids
simulation
Experiments
Temperature
temperature
Microgravity
shoulders
microgravity
cells
Atoms
coordination number
atoms
Neutrons
cut-off

ASJC Scopus subject areas

  • Condensed Matter Physics

これを引用

Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation : A comparison to liquid Pb. / Itami, T.; Munejiri, S.; Masaki, Tadahiko; Aoki, H.; Ishii, Y.; Kamiyama, T.; Senda, Y.; Shimojo, F.; Hoshino, K.

:: Physical Review B - Condensed Matter and Materials Physics, 巻 67, 番号 6, 064201, 01.02.2003, p. 642011-6420112.

研究成果: Article

@article{252053e1145f4100939289edf48e58ca,
title = "Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation: A comparison to liquid Pb",
abstract = "The structure of liquid Sn was studied by neutron scattering experiments in the widest temperature range that was ever performed. Though, on increasing temperature, the existence of the shoulder in the structure factor, S(Q), becomes less clear in the change of the overall shape of the S(Q), the structure related to this shoulder seems to be present even at 1873 K. The first-principle molecular-dynamics (FPMD) simulation was performed for the first time for liquid Sn by using the cell size of 64 particles. The calculated results well reproduced S(Q) obtained by the neutron experiments. The angle distribution, g(3)(θ,rc), was evaluated for the angle between vectors from centered atom to other two atoms in spheres of cutoff radii rc's. The g(3)(θ, rc) shows that, with the decrease of rc from 0.4 to 0.3 nm, a rather sharp peak around 60 ° disappears and only a broad peak around 100 ° remains; the former peak may be derived from the feature of the closely packed structures and the latter one is close to the tetrahedral angle of 109 °. In addition, the coordination number, n, of liquid Sn counted within the sphere of rc=0.3 nm is found to be 2-3 and does not change with the increase of temperature even up to 1873 K. These facts indicate that at least the fragment of the tetrahedral unit may be essentially kept even at 1873 K for liquid Sn. For comparison, the FPMD simulation was performed for the first time also for liquid Pb. No sign of the existence of the tetrahedral structure was observed for liquid Pb. Unfortunately, the self-diffusion coefficients, D's, obtained from this FPMD for liquid Sn do not agree with those obtained by the microgravity experiments though the structure factors, S(Q)'s, are well reproduced. To remove the limitation of the small cell size of the FPMD, the classical molecular-dynamics simulations with a cell size of 2197 particles were performed by incorporating the present experimental structural information of liquid Sn. Obtained D's are in good agreement with the microgravity data.",
author = "T. Itami and S. Munejiri and Tadahiko Masaki and H. Aoki and Y. Ishii and T. Kamiyama and Y. Senda and F. Shimojo and K. Hoshino",
year = "2003",
month = "2",
day = "1",
language = "English",
volume = "67",
pages = "642011--6420112",
journal = "Physical Review B-Condensed Matter",
issn = "0163-1829",
publisher = "American Institute of Physics Publising LLC",
number = "6",

}

TY - JOUR

T1 - Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation

T2 - A comparison to liquid Pb

AU - Itami, T.

AU - Munejiri, S.

AU - Masaki, Tadahiko

AU - Aoki, H.

AU - Ishii, Y.

AU - Kamiyama, T.

AU - Senda, Y.

AU - Shimojo, F.

AU - Hoshino, K.

PY - 2003/2/1

Y1 - 2003/2/1

N2 - The structure of liquid Sn was studied by neutron scattering experiments in the widest temperature range that was ever performed. Though, on increasing temperature, the existence of the shoulder in the structure factor, S(Q), becomes less clear in the change of the overall shape of the S(Q), the structure related to this shoulder seems to be present even at 1873 K. The first-principle molecular-dynamics (FPMD) simulation was performed for the first time for liquid Sn by using the cell size of 64 particles. The calculated results well reproduced S(Q) obtained by the neutron experiments. The angle distribution, g(3)(θ,rc), was evaluated for the angle between vectors from centered atom to other two atoms in spheres of cutoff radii rc's. The g(3)(θ, rc) shows that, with the decrease of rc from 0.4 to 0.3 nm, a rather sharp peak around 60 ° disappears and only a broad peak around 100 ° remains; the former peak may be derived from the feature of the closely packed structures and the latter one is close to the tetrahedral angle of 109 °. In addition, the coordination number, n, of liquid Sn counted within the sphere of rc=0.3 nm is found to be 2-3 and does not change with the increase of temperature even up to 1873 K. These facts indicate that at least the fragment of the tetrahedral unit may be essentially kept even at 1873 K for liquid Sn. For comparison, the FPMD simulation was performed for the first time also for liquid Pb. No sign of the existence of the tetrahedral structure was observed for liquid Pb. Unfortunately, the self-diffusion coefficients, D's, obtained from this FPMD for liquid Sn do not agree with those obtained by the microgravity experiments though the structure factors, S(Q)'s, are well reproduced. To remove the limitation of the small cell size of the FPMD, the classical molecular-dynamics simulations with a cell size of 2197 particles were performed by incorporating the present experimental structural information of liquid Sn. Obtained D's are in good agreement with the microgravity data.

AB - The structure of liquid Sn was studied by neutron scattering experiments in the widest temperature range that was ever performed. Though, on increasing temperature, the existence of the shoulder in the structure factor, S(Q), becomes less clear in the change of the overall shape of the S(Q), the structure related to this shoulder seems to be present even at 1873 K. The first-principle molecular-dynamics (FPMD) simulation was performed for the first time for liquid Sn by using the cell size of 64 particles. The calculated results well reproduced S(Q) obtained by the neutron experiments. The angle distribution, g(3)(θ,rc), was evaluated for the angle between vectors from centered atom to other two atoms in spheres of cutoff radii rc's. The g(3)(θ, rc) shows that, with the decrease of rc from 0.4 to 0.3 nm, a rather sharp peak around 60 ° disappears and only a broad peak around 100 ° remains; the former peak may be derived from the feature of the closely packed structures and the latter one is close to the tetrahedral angle of 109 °. In addition, the coordination number, n, of liquid Sn counted within the sphere of rc=0.3 nm is found to be 2-3 and does not change with the increase of temperature even up to 1873 K. These facts indicate that at least the fragment of the tetrahedral unit may be essentially kept even at 1873 K for liquid Sn. For comparison, the FPMD simulation was performed for the first time also for liquid Pb. No sign of the existence of the tetrahedral structure was observed for liquid Pb. Unfortunately, the self-diffusion coefficients, D's, obtained from this FPMD for liquid Sn do not agree with those obtained by the microgravity experiments though the structure factors, S(Q)'s, are well reproduced. To remove the limitation of the small cell size of the FPMD, the classical molecular-dynamics simulations with a cell size of 2197 particles were performed by incorporating the present experimental structural information of liquid Sn. Obtained D's are in good agreement with the microgravity data.

UR - http://www.scopus.com/inward/record.url?scp=0037306451&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037306451&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0037306451

VL - 67

SP - 642011

EP - 6420112

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 0163-1829

IS - 6

M1 - 064201

ER -