Study on environment conscious technologies in a super tall building: Evaluation of PV performance considering aerological climate

Ryosuke Inomata, Takashi Akimoto, Daisuke Hatori, Shigeaki Takanishi, Shunsuke Nakamura, Yosuke Mochizuki, Nana Araki, Daiki Yamashina

研究成果: Conference article


In recent years, buildings have tended to be taller, and their energy potential is expected be used effectively . Photovoltaics is considered one of technologies affected by air temperature, outside air velocity, and solar radiation from the aerological climate of supertall buildings with a height of 390 m. The energy potential of the "height" of photovoltaic power generation systems is affected by two factors: aerological climate and shadows cast by surrounding buildings. Taking these effects into account, the predicted annual power generation amount was calculated. At 390 m above ground, it was confirmed that the power generation amount was greater than that on the ground, when considering the effectiveness of photovoltaic systems. Then, we calculated the predicted annual power generation amount on each wall and roof surface of a tall building with a height of 390 m above the ground. By evaluating the energy-saving effect of adopting photovoltaic systems, we evaluated the photovoltaic system using the wall surface from the viewpoint of the primary energy reduction and primary energy consumption of the building.

ジャーナルE3S Web of Conferences
出版物ステータスPublished - 2019 8 13
イベント13th REHVA World Congress, CLIMA 2019 - Bucharest, Romania
継続期間: 2019 5 262019 5 29


ASJC Scopus subject areas

  • Environmental Science(all)
  • Energy(all)
  • Earth and Planetary Sciences(all)